INTRODUCTION

TSIR04 is a relay module with optically isolated inputs and OLED display and temperature sensor port. Very powerful and easy to use. The communication module are replaceable. USB/Bluetooth/WiFi/Zigbee are supported. We provide free test program and smart phone APP. You can use your computer or smart phone control this relay easily.

The TSIR04 provides four volt free contact relay outputs with a current rating of up to 10Amp each. The module is powered from a 5V(12V) DC power supply. The DC input jack is 2.1mm with positive core polarity, The relays are SPDP types.

SPECIFICATIONS

- Number of Relays:4
- Rated voltage:DC 5V and 12V version
- Relay switching maximum power:10A 250VAC
- Baud rate:9600
- Communication Port:USB/Wireless
- Support Xbee/Bluetooth/WiFi Control
- Supply voltage:5V/12V DC

IMPORTANT DISCLAIMER

This device connects to the USB port of your computer and can be used to control external devices connected to its onboard relays. Incorrect wiring or shorts on the board can potentially cause damage to the controller itself, your computer's USB controller and/or your computer's motherboard if an external voltage make its way to the USB bus or the USB port is shorted. Extreme care must be taken when using this device to avoid any damage to your equipment. In particular, make sure you always disconnect the device from the USB port as well as any other power source when working on the device.

TinySine Electronics, it's shareholder,employees, suppliers, distributors and/or resellers are not liable for any damage or loss of data as a result of the use of this device, including special, incidental, or consequential damages resulting from the use of this device, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or recovering or reproducing any data stored in computers connected to this device.

Your use of this circuit indicates your acceptance of these terms
Module Overview

Optically Isolated Inputs

TSIR04 has 4 optically Isolated input ports. Input voltage absolute Max. 30v DC, Operational 4.5v to 27v DC. TSIR04 has 2 working modes:

Normal mode:
When the board read a input signal. Reporting the input state.

Auto mode:
When the board read a input signal. Reporting the input state and turn on the corresponding relay. When the input voltage removed, relay turn off.

OLED display
OLED display show the current board state. You can check the state no need connect it.
with your PC.

<table>
<thead>
<tr>
<th>Current mode:</th>
<th>Manual/Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1:0/1</td>
<td>RLY1:ON/OFF</td>
</tr>
<tr>
<td>IN2:0/1</td>
<td>RLY2:ON/OFF</td>
</tr>
<tr>
<td>IN3:0/1</td>
<td>RLY2:ON/OFF</td>
</tr>
<tr>
<td>IN4:0/1</td>
<td>RLY3:ON/OFF</td>
</tr>
<tr>
<td>Temperature:</td>
<td>xxx °C</td>
</tr>
</tbody>
</table>

Temperature monitoring

TSIR relay have a [DS18B20 temperature sensor](https://www.tinytine.com) port. You can use it to read the realtime temperature.

Operating temperature range: -55°C to +125°C (-67°F to +257°F).

Wiring:
red (VCC), yellow(DATA), green(GND)

Relay power rating

If the relay is used at a voltage or current exceeding this specification, the life of the contacts may be significantly shortened.
A full datasheet for the relays used on the TSIR04 is here: [G5LA datasheet](https://www.tinytine.com)
Commands

This module operates with an easy to use command set as described in the table below.

<table>
<thead>
<tr>
<th>Command</th>
<th>dec</th>
<th>hex</th>
<th>ASCII</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>41</td>
<td>A</td>
<td></td>
<td>Set working mode to auto mode</td>
</tr>
<tr>
<td>86</td>
<td>42</td>
<td>B</td>
<td></td>
<td>Set working mode to manual mode</td>
</tr>
<tr>
<td>87</td>
<td>43</td>
<td>C</td>
<td></td>
<td>Get current working mode</td>
</tr>
<tr>
<td>88</td>
<td>44</td>
<td>D</td>
<td></td>
<td>Get all states - returns 4 bytes, relay states+input states+temperature raw data</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>F</td>
<td></td>
<td>Returns channel 1 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>71</td>
<td>47</td>
<td>G</td>
<td></td>
<td>Returns channel 2 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>72</td>
<td>48</td>
<td>H</td>
<td></td>
<td>Returns channel 3 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>73</td>
<td>49</td>
<td>I</td>
<td></td>
<td>Returns channel 4 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>74</td>
<td>4A</td>
<td>J</td>
<td></td>
<td>Returns channel 5 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>75</td>
<td>4B</td>
<td>K</td>
<td></td>
<td>Returns channel 6 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>76</td>
<td>4C</td>
<td>L</td>
<td></td>
<td>Returns channel 7 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>77</td>
<td>4D</td>
<td>M</td>
<td></td>
<td>Returns channel 0 state as 1 byte, where 255 indicates input is powered and 0 indicates it is not.</td>
</tr>
<tr>
<td>78</td>
<td>4E</td>
<td>N</td>
<td></td>
<td>Sends 1 byte back. Individual bits indicate input status of each channel, a 1 indicating powered input</td>
</tr>
<tr>
<td>90</td>
<td>5A</td>
<td>Z</td>
<td></td>
<td>Get software version - returns 2 bytes, the first being the Module ID which is 15, followed by the software version</td>
</tr>
<tr>
<td>91</td>
<td>5B</td>
<td></td>
<td></td>
<td>Get relay states - sends a single byte back to the controller, bit high meaning the corresponding relay is in position 1</td>
</tr>
<tr>
<td>92</td>
<td>5C</td>
<td>\</td>
<td></td>
<td>Set relay states - the next single byte will set all relays states, All on = 255 (11111111) All off = 0</td>
</tr>
<tr>
<td>97</td>
<td>61</td>
<td>a</td>
<td></td>
<td>Get temperature-Raw data, 2byte MSB+LSB temperature=(MSB*256+LSB)/16</td>
</tr>
<tr>
<td>98</td>
<td>62</td>
<td>b</td>
<td></td>
<td>Get temperature-Character output. For example: 23.643 celsius degree</td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>d</td>
<td></td>
<td>All relays to position 1</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>e</td>
<td></td>
<td>Relay 1 to position 1</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>f</td>
<td></td>
<td>Relay 2 to position 1</td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>g</td>
<td></td>
<td>Relay 3 to position 1</td>
</tr>
<tr>
<td>104</td>
<td>68</td>
<td>h</td>
<td></td>
<td>Relay 4 to position 1</td>
</tr>
<tr>
<td>105</td>
<td>69</td>
<td>i</td>
<td></td>
<td>Relay 5 to position 1</td>
</tr>
<tr>
<td>106</td>
<td>6A</td>
<td>j</td>
<td></td>
<td>Relay 6 to position 1</td>
</tr>
<tr>
<td>107</td>
<td>6B</td>
<td>k</td>
<td></td>
<td>Relay 7 to position 1</td>
</tr>
<tr>
<td>108</td>
<td>6C</td>
<td>l</td>
<td></td>
<td>Relay 8 to position 1</td>
</tr>
<tr>
<td>109</td>
<td>6D</td>
<td>m</td>
<td></td>
<td>All relays to position 0</td>
</tr>
<tr>
<td>110</td>
<td>6E</td>
<td>n</td>
<td></td>
<td>Relay 1 to position 0</td>
</tr>
<tr>
<td>111</td>
<td>6F</td>
<td>o</td>
<td></td>
<td>Relay 2 to position 0</td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>p</td>
<td></td>
<td>Relay 3 to position 0</td>
</tr>
<tr>
<td>113</td>
<td>71</td>
<td>q</td>
<td></td>
<td>Relay 4 to position 0</td>
</tr>
<tr>
<td>114</td>
<td>72</td>
<td>r</td>
<td></td>
<td>Relay 5 to position 0</td>
</tr>
<tr>
<td>115</td>
<td>73</td>
<td>s</td>
<td></td>
<td>Relay 6 to position 0</td>
</tr>
<tr>
<td>116</td>
<td>74</td>
<td>t</td>
<td></td>
<td>Relay 7 to position 0</td>
</tr>
<tr>
<td>117</td>
<td>75</td>
<td>u</td>
<td></td>
<td>Relay 8 to position 0</td>
</tr>
<tr>
<td>118</td>
<td>76</td>
<td>v</td>
<td></td>
<td>Relay 9 to position 0</td>
</tr>
</tbody>
</table>
How to use

USB Control Mode:

Step1: Install the Driver

This module uses CP2102 USB to UART chip. Before use it you will need to download the [CP2102 Driver](#).

Connect the module to computer and windows will detect it and ask for the drivers. Point windows to the inf folder and it will install the driver.

A new com port will now appear.
Step2: Run HyperTerminal

The TSIR relay module is controlled using serial command. We use HyperTerminal provided with Windows, but your favorite terminal should work fine. Be sure to set the communication speed to 9600 8-N-1 and disable Flow control. Connect the module to computer with USB cable, open the port and send test command you will see the relay on or off.
Step3: Test Program

To get the TSIR up and running in the minimum amount of time we have put together an example test program to demonstrate the functionality of the module.
Wireless Control Mode:

Bluetooth Remote Control

The TinySine Bluetooth Bee V3 is a Smart Ready Bluetooth wireless module. Which means it can works with any version Bluetooth device. It can works with both android and iOS. It has compact size and the pinout is compatible with XBee which is suitable for all kinds of microcontroller systems who have 3.3V power out, the module can use the AT commands to set baud rate. The BluetoothBee module comes with an onboard antenna, the antenna provides better signal quality. It acts like a transparent serial port, which works with a variety of Bluetooth adapter and Bluetooth phone.
Step1: Power the Relay board

There are two versions of TSIR relay(5V/12VDC). Power your TSIR relay with correct voltage. “PWR” LED lights up. “STATE” LED on the Bluetooth Bee slow blink.

Step2: Install TSIR Bluetooth APP

Android APP:

We provide Android .apk file directly. You can download or copy it to your Android smartphone and install it directly. Download
Bluetooth V3 module is a dual mode Bluetooth module. Click Menu-> “Connect device”. You will find a Bluetooth BLE device (00:0E:0B:XX:XX:XX) and a Bluetooth EDR device (00:0E:0E:XX:XX:XX). Here we use Bluetooth EDR. And you can rename your relay board.

Default password: 1234. Once it connected, “STATE” LED solid on. You can turn ON/OFF the relay. Monitoring the input & temperature.
Click the temperature value switching the Fahrenheit and Celsius display. Switching the working mode. Let the relay output associated with input.

iPhone APP:

Search “TSIR” in the APP store. Or visit install page directly. [TSIR Bluetooth](#)
Click “Connect Device” to searching the BLE device. Select and connect it. “STATE” LED solid on.

You can turn ON/OFF the relay. Monitoring the input&temperature. Click the temperature value switching the Fahrenheit and Celsius display. Switching the working mode. Let the relay output associated with input.
WIFI Remote Control

The WiFiBee module is based upon Roving Networks' robust RN-171 Wi-Fi module and incorporates 802.11 b/g radio, 32 bit processor, TCP/IP stack, real-time clock, crypto accelerator, power management unit and analog sensor interface. The module is pre-loaded with Roving firmware to simplify integration and minimize development time of your application. In the simplest configuration, the hardware only requires four connections (PWR, TX, RX and GND) to create a wireless data connection.

Step1: Install TSIR WiFi APP

Andorid APP:

We provide Andorid .apk file directly. You can download or copy it to your Android smartphone and install it directly. [Download](#)

iPhone APP:

Search "TSIR" in the APP store. Or visit install page directly. [TSIR WiFi](#)
Step 2: Configuring WiFiBee module

There are 3 ways to configure the WiFiBee module.

- **Use APP to configure it**

1. Plug your WiFiBee module into the wireless socket. Set the mode from "Normal->AP" and then power the TSIR module. WiFiBee creates a new WiFi network which named 'WiFly-EZX-XX'. The LEDs on the WiFiBee will blink in sequence.

2. Let your smartphone join this 'WiFly-EZX-XX' WiFi Network. WiFiBee D1 slow blink, D3 fast blink.
3. Open TSIR WiFi APP. Clink “Configure” and follow the steps give your relay a name->Input your home WiFi SSID->Input your home WiFi password->assign a valid IP address for your relay board->Click Start.

4. Power off the TSIR relay board and set the mode switch back to “normal”. Power it up. D1 slow blink, Means it already joined your home WiFi Network.

5. Let your smartphone join your home WiFi Network. Restart the APP. Connect device. Then you can control the TSIR.
Use configure tool program

If you have a USB adapter in hand. You can set the WiFibee by serial port. We provide a WiFibee Setting tool program. Very convenient to use.

Simple 6 steps:
1. Plug your WiFibee or WiFly on your USB adapter
2. Connect the USB adapter to your computer.
3. Install FT232RL drivers. A new COM port will appears in the device manager.
4. Open the WiFibee setting tools.exe. Select the correct COM port.
5. Input your network SSID, Password, and assign a valid IP to the WiFi module.
6. Click writing configuration. All done!

After configuration. Your WiFibee module should joined your wifi network. D1 slow Blink.
If you want reset the module to factory setting. Just click "Factory Reset" button.

Send AT commands

Plug your WiFibee module into the wireless socket. Set the mode from "Normal->AP" and then power the TSIR module. The LEDs on the WiFibee will blink in sequence.

*The WiFibee module will entering soft AP mode. Default IP is 1.2.3.4:2000. 4.3 version firmware Default IP is 192.168.1.1:2000
Please refer the following steps to configure your wifly module.

1. Set your computer Obtain an IP address automatically.

2. From your computer, You will find a new wireless network named Wifly-EZX-XX.
Connect to the WiFly-EZX-XX network. This is an open network that does not require a pass phrase or pass key.

NOTE: It may take a couple of minutes for Auto IP in Windows to assign an IP address and connect to the network. You can check IP address of your Windows computer by running the ipconfig command in the command window. If connected, this command will show you the IP address and net mask for your computer.

The IP address assigned by Auto IP must be on the subnet 1.2.3.x subnet otherwise the WiFly module will not be accessible.

NOTE: If your machine has both wireless and wired interface hardware you may need to disable the wired LAN interface hardware before connecting to the adhoc network. If the wired LAN is enabled, the computer may assign an IP address that is not on the same subnet as the WiFly module.

3. Run HyperTerminal and create a new connection.
AP mode

Telnet into the Wifly WiFi module on port 2000 telnet 1.2.3.4 :2000 / 192.168.1.1 (4.3 version firmware)

Once connected and you have a good IP address. You should see the response
HELLO Type $$$ (without hitting return) to enter command mode. Now you can setup
the module's wifi settings (hit return after each command):

set wlan phrase <your wpa password>
set wlan ssid <your ssid>
set wlan join 1
save

*Our test network ssid is Tinyos3f. Wlan phrase is 0000000000

And if you want a fixed IP address. Here is the command:
set ip a <your IP>
set ip dhcp 0
set sys printlvl 0
save
reboot
Here we set our WIFI module IP address: 192.168.1.185

If we use a smart phone APP to control this relay module. When the phone out of WIFI signal area may cause dead connection. We need to closing the TCP connection in this situation. Here is the setting command. It’s important.

```text
set comm idle 5
save
Reboot
```

Power off the TSIR relay board and set the mode switch back to “normal”. Power it up. D1 slow blink, Means it already joined your home WiFi Network.

If you want set the WiFiBee module to factory setting:

```text
factory RESET
save
reboot
```

More details about wifly module please download the user manual.

Step3: Control your Relay
Click “Connect Device” to connect your WiFi relay board. Once it connected. D1 solid on.
D2 fast blink.
You can turn ON/OFF the relay. Monitoring the input&temperature. Click the temperature
value switching the Fahrenheit and Celsius display. Switching the working mode. Let the
relay output associated with input.